Private Sewage System Design Example/Template

Field

PREFACE

(Version April 1, 2013)

This is an example design document for a septic tank and treatment field system. It reflects the information needed to demonstrate the design considerations for the particular site and system required by the Private Sewage Standard of Practice 2009 (Standard) have been made. Considerations needed for a particular site may go beyond those used as an example in this document.

This example document can be used as a template by editing or adding critical information to suit the particular site and system. This is an example only.

While it is preferable to use a consistent format to facilitate quick review, other formats of the design may be accepted by the Safety Codes Officer (SCO), if the design includes the required information that shows the necessary design considerations were made.

A design is required in support of a permit application. It includes drawings and supporting information as it applies to the specific design. This is the information a SCO will review to evaluate whether design considerations required by the Standard have been adequately made prior to issuing the permit.

Including the design in the operation and maintenance manual that must be provided to the owner, will simplify development of the operation and maintenance manual.

May 31, 2010

PRIVATE SEWAGE SYSTEM DESIGN CONSIDERATIONS AND DETAIL.

Joe Smith Box 1, Somewhere, Alberta

Legal Description of Property:

Municipal Address:

SE Sec 9, Twp 71, Rge. 5, W of 6 Mer. Lot 1; Blk 1; Plan 123450 19035 - Rge. Rd. 5

This private sewage system is for a 4-bedroom single family dwelling. The total peak wastewater flow per day used in this design is 450 imperial gallons. The average operating flow is expected to be 300 gallons per day.

The sewage system includes a septic tank and treatment field system. This system is suitable for the site and soil conditions of your property. The design reflected in the following applies, and meets, the requirements of the current Alberta Private Sewage Systems Standard of Practice (Standard). The system will achieve effective treatment of the wastewater from this residence.

1 Wastewater Characteristics

1.1. Wastewater Peak flow

The development served is a 4-bedroom single-family dwelling. Based on the characteristics of the home identified during the review the total plumbing fixture unit load in this residence is 21. Fixture unit load is as follows:

- \circ Main bath = 6 fixture units
- Bathroom with shower off master bedroom = 6 fixture units
- \circ Kitchen sink = 1.5 fixture units
- \circ Laundry stand pipe = 1.5 fixture units
- Bathroom in basement = 6 fixture units

Total peak daily flow used in the design is: (75 lmp. gal/bedroom x 4 bedrooms x 1.5 persons/bedroom)	450 Imp. gal/day
--	------------------

1.2. Wastewater Strength

Characteristics of the development were considered to assess sewage strength. No garbage grinders or other characteristics were identified that would cause typical wastewater strength to be exceeded.

	Projected westowater strength for the	BOD 220 mg/L
	Projected wastewater strength for the design is:	TSS 220 mg/L
_	uesign is.	Oil and Grease 50 mg/L

1.3. Wastewater Flow Variation Considerations

The characteristics of this development indicate wastewater flow volumes will not vary substantially during the day or from day to day. As a result, no flow variation management is needed.

2 Site Evaluation Findings

2.1 Site Evaluation

The lot is 3.88 acres (1.57 hectares). The dimensions of the property are shown in the drawing attached in Appendix A. The adjacent land use is country residential development, varying in size from approximately 1.5 to 3 hectares. There is a water well and a treatment mound on the neighbouring property to the north and south.

Blueberry Creek runs parallel to the southwest property line. The southwest portion of the property has a 5% slope toward the creek. Seasonally saturated soils were found in the lower slope areas near the southwest property line. Line locates confirmed there are no existing utilities in the area selected for the system components. **The area selected for the system must be kept clear of any utilities to be installed.** No utility right-of-ways or easements were noted on the subject site based on a review of the survey plan attached to this design and as indicated by the owner.

The site evaluation assessed the area within in 330 ft (100 m) of all system design components. The selected treatment site is nominally flat. No significant setback constraints were noted. Pertinent features identified during the site review and the required setback distances are identified on the site plan in Appendix A.

2.2 Soils Evaluation

Three soil test pits were investigated on this site. Test Pit 1 is located where the owner preferred the system be located. This area has severe soil constraints requiring a treatment mound at more expense; however, this area could act as a back up if needed. Test pits 2 and 3 identified better soil characteristics suitable for the installation of a treatment field receiving effluent from a septic tank.

There is little variability between test pits 2 and 3 so they are adequate for design purposes. The location of the test pits are shown on the site plan in Appendix A. Soil profile descriptions of each test pit are attached in Appendix B.

3 Key Soil Characteristics and Effluent Loading Rates

3.1. Restrictive Layer Considerations

A restrictive layer exists at 7 feet below surface as indicated by:

- redoximorphic features mottling at 7 ft; gleying below 7.5 ft,
- saturated, sandy clay textured soil having massive structure at 7.5 feet will severely limit downward flow.

3.2. Limiting Condition For Soil Loading Rate Selection

The key soil characteristic affecting effluent loading is:

• Fine Sandy Loam (FSL) textured soil having a blocky, grade 3 structure at the depth of 24 to 60 inches.

3.3. In Situ Soil Effluent Loading Rate Selection

• effluent loading rate for primary treated (septic tank) effluent on this soil is 0.32 Imp. gal/day/ft².

3.4. Effluent Linear Loading Rates and Design Considerations

The soil profile characteristics do not require the application of linear loading rates set out in the Standard. However, this design minimizes linear loading as the laterals have been oriented to make the field long and narrow and at 90 degrees (perpendicular) to the assumed direction of the underlying ground water flow toward the creek to the southwest.

The trench bottom depth of this treatment field will be at a maximum of 2 feet below surface. For this level site the trench bottom elevation for the 5 weeping lateral trenches are the same.

4 Initial Treatment Component Design Details

Details of the initial treatment components required for this design are attached in Appendix C.

4.1 Septic Tank and Dose Tank

Details of the initial treatment components required for this design are attached in Appendix C.

4.1 Septic and Dose Tank Requirements

4.1.1 Septic Tank

The working capacity of the septic tank specified for this design is 1218 Imperial gallons. Appendix C includes specifications for septic tank Model ST 1218.

The minimum working capacity based on Table 4.2.2.2 of the 2009 SOP for this development is 940 Imp. gal.

Burial depth of the septic tank at finished grading above the top of the tank will be 4ft 6 inches. This tank is rated for a maximum burial depth of 5 ft 10 inches. Insulation of the tank is not required as the burial depth exceeds 4 feet.

4.1.2 Dose Tank

The dose tank (second chamber) has a total capacity of 670 Imp. gal. In addition to the single dose volume the tank provides approximately 220 Imp. gal emergency storage above the high effluent alarm setting. Specifications provided by the manufacturer are shown in Appendix C.

4.1.3 Effluent Filter

An inline 2-inch diameter Sim/Tech[©] model STF-100 effluent filter having an effective opening of less than 1/8-inch (3.2 mm) is used. When clean the filter is rated at a head loss of 0.5 feet at a flow of 80 lmp. gal/min. A one year service interval is expected with typical flow volumes and wastewater characteristics.

5 Soil Treatment Component Design Details

5.1 Selection of Soil Infiltration System Design

The system selected for this design is a septic tank and treatment field using 22 inch wide chambers and pressure distribution of effluent. To maintain the required 5 foot vertical separation to the restrictive layer identified in the soil profile the maximum depth of the trench bottom is 2 feet below grade.

5.2 Treatment Field Size

Trench bottom area:	
Expected peak daily flow:	450 lmp. gal/day
Soil loading rate:	0.32 Imp.gal/day/ft ²
Trench bottom soil infiltration surface area:	1407 ft ²

The 22 inch chambers receiving primary treated effluent Level 1 that is spread over the trench bottom surface area using pressure distribution receives a 1.3 width credit, resulting in a credited trench bottom soil infiltration width of 2.38 feet.

Total length of trench bottom required:	:	591 ft
Layout consists of:		
5 weeping lateral trenches	-	each 120 feet long.

The location of the treatment field on the property and layout of the laterals and are shown in Appendix A and D. The treatment field sizing worksheets are provided in Appendix E.

6 Effluent Distribution Design Detail

6.1 Effluent Pressure Distribution

Five 120 ft centre fed pressure effluent distribution laterals are used over the soil infiltration area. The calculations are provided in Appendix E on the pressure distribution worksheets. The pressure distribution lateral layout drawing is included in Appendix D.

6.1.1 Effluent Pressure Distribution Lateral Design

The distribution laterals are center fed resulting in ten 60 ft pressure distribution laterals.

- Each lateral is 1-inch schedule 40 PVC pipe.
- Each lateral has 12, 1/8-inch orifices drilled at 5 foot spacing.
- The laterals shall be installed to maximize the elevation above the soil infiltration surface and exceed the minimum 4 inches above the soil infiltration surface.
- Pressure distribution lateral piping will be supported at a maximum of 4 foot spacing.
- All orifices shall point up except every 4th orifice shall point down and be equipped with an orifice shield.

The design achieves a minimum 5 foot pressure head at each orifice, resulting in a design flow of 0.34 Imp. gal/min from each 1/8-inch orifice.

There are 120 orifices throughout the effluent pressure distribution system resulting in a **total flow** of **40.8 Imp gal/min**. An additional 3.3 Imp. gal/min is added for the ¼ inch drain back orifice drilled at the lowest elevation of the effluent piping in the dose tank to achieve drain back of the laterals and supply piping.

Total flow from all orifices for this effluent pressure distribution system is 44.1 Imp. gal/min (53 U.S. gal/min).

6.1.2 Pressure Head Requirements

The total length of supply piping from the pump to the start of the pressure distribution laterals is 205 feet. The supply piping is 2 inch Schedule 40 PVC pipe. The allowance for equivalent length of pipe due to fittings is 69 feet of pipe. Total equivalent length of pipe is 274 feet. This is detailed in appendix E.

Pressure head loss due to friction

The friction loss through the piping at the flow of 40.8 Imp. gal/min is 10.1 feet of head pressure.

Other friction loss considerations required include:

- Allowance for head loss through the effluent filter under partial plugging is 5.5 feet.
- Allowance for pressure head loss along the pressure distribution laterals of 1 foot.

Total pressure head required to overcome friction loss is 16.6 feet pressure head.

Pressure head to meet vertical lift requirements include:

- A pressure head at each orifice of 5 feet.
- Lift distance of effluent from the low effluent level in the tank to the pressure distribution laterals is 7 feet.

Vertical lift and friction loss results in a total pressure head requirement of 28.6 ft.

Pump specifications:

Demands for this pressure distribution lateral system are 44.1 Imp. gal/min (53 U.S. gal/min) at 28.6 feet of pressure head.

The pump capacity must exceed these demands to allow for variations in the design and decreased pump performance over time. A Myers model ME 50 effluent pump (1/2 hp) is specified for this system. The pump specifications with the effluent distribution system demands plotted on the pump curve are included in Appendix C.

6.1.3 Effluent Dosing Volume and Control settings.

The volume of effluent in the 600 ft of 1 inch PVC lateral piping is 22.4 lmp. gal. The volume of an individual dose must be at least 5 times the volume of the pressure distribution laterals, which is 112.2 lmp. gal.

The volume in the 205 ft of 2 inch PVC effluent supply line is 30.1 lmp. gal. Total individual dose volume determining float settings is 142.3 lmp gal [30 lmp. gal to fill the effluent supply line and deliver the 112.2 lmp. gal per dose].

7 Controls

All effluent level control floats will be attached to an independent PVC pipe float mast.

7.1 Effluent Dosing Float Setting

The dose tank dimensions result in 11.27 Imp. gallons per inch of depth. The float control elevations shall be set at:

- 12.5 inches between float off and on elevations (deliver 142.3 Imp. gal/dose).
- Off: 19 inches off floor of dose tank
- On: 31.5 inches off floor of dose tank

7.2 High Liquid Level Alarm

The high level alarm specified for this system is a JB Series 1000T (manufactured by Alarm Tech Inc.).

• Alarm control float is set at 1.5 inches above pump on elevation or at 33 inches above the floor of the dose tank/chamber.

8 Operation Monitoring Components

The following components are included in the system design. See detailed drawings in Appendix D for locations.

8.1 Monitoring Ports

Monitoring ports are provided at both ends of the sand layer to enable inspection of the effluent ponding depth that may result.

8.2 Pressure Distribution Lateral Clean Outs

Clean outs are provided at the end of each pressure distribution lateral with access to grade through an access box suitable for its purpose and anticipated traffic.

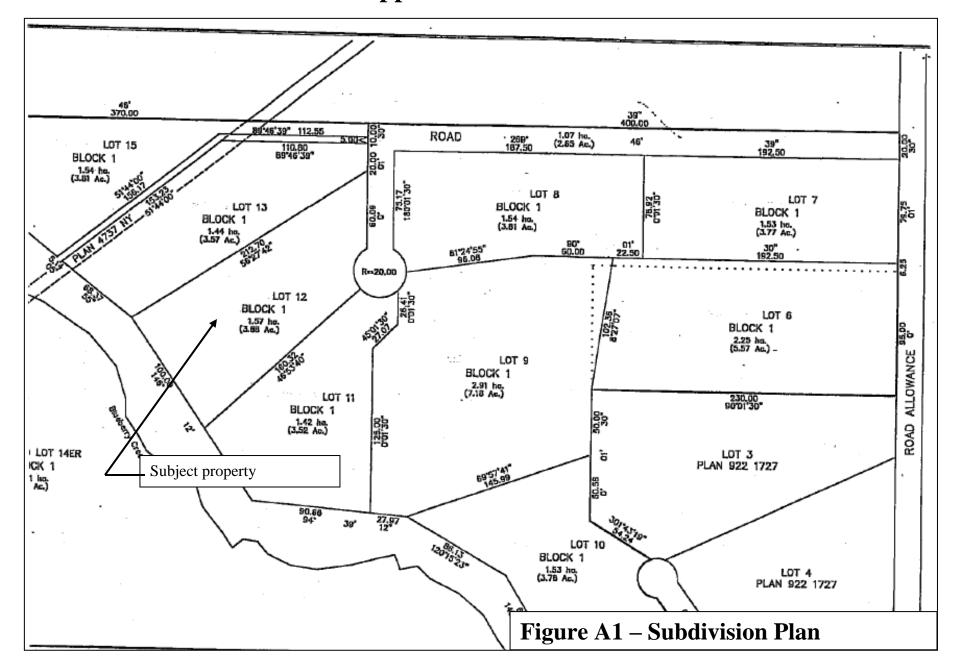
8.3 Sampling Effluent Quality

Samples of the effluent can be taken from the effluent dose chamber.

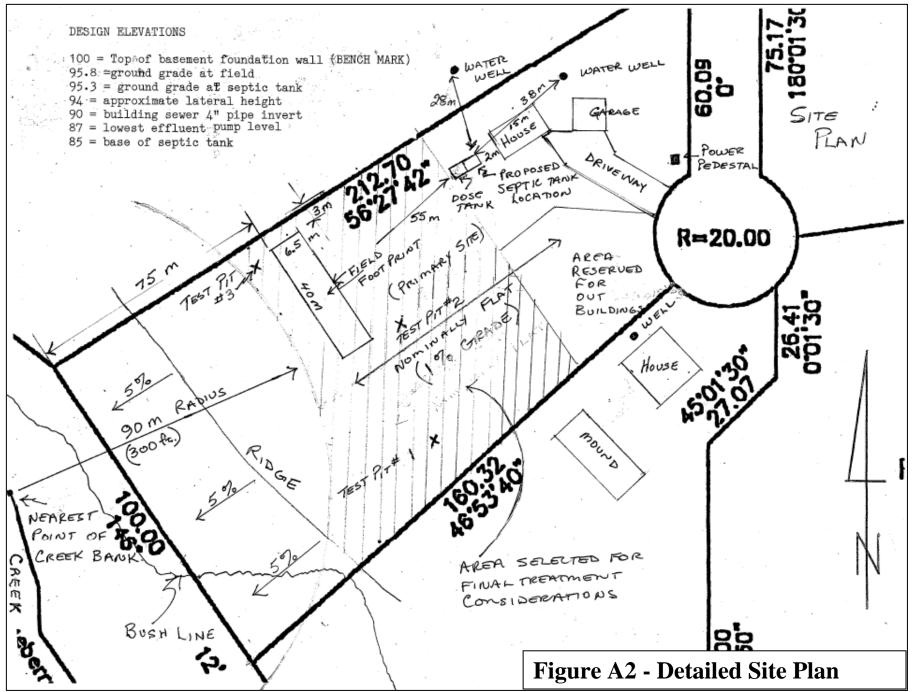
9 System Setup and Commissioning

- Clean the septic tank and effluent chamber of any construction debris.
- Flush effluent distribution laterals.
- Conduct a squirt test to assess that residual head pressure required by the design is achieved and that the volume from each orifice is within allowed tolerances.
- Confirm the correct float levels and ensure this delivers the dose volume required by this design.

10 Operation and Maintenance Manual


The Owner's Manual detailing the design, operation, and maintenance of the installed system will be provided to the owner in accordance with Article 2.1.2.8 of the Standard.

Signature and closing by the designer/Installer.


Attachments:

Appendix A	-	Site Information [Site Plan, Property Subdivision Plan]
Appendix B	-	Soil Information [Soil Profile Logs, Laboratory Analysis Results]
Appendix C	-	Manufacturer's and Design Specifications for System Components
Appendix D	-	Detailed System Schematics and Drawings
Appendix E	-	System Design Worksheets

This design has been developed by (name of certified person and company name). This design meets the requirements of the Alberta Private Sewage Systems Standard of Practice 2009 unless specifically noted otherwise and in such case special approval is to be obtained prior to proceeding with installation of this design. *(Carry on with any other qualifications or limitations that in your opinion as the designer/installer are needed.)*

Appendix A – Site Information

Appendix B - Alberta Private Sewage Treatment System Soil Profile Log Form

Smíth R	esídence	Soíl Ass	essment												
	Legal Land Location Test Pit GPS Coordinates														
LSD-1/4	Sec	Twp	Rg	Mer	Lot	В	lock		Plan	Easting	Northing				
SE	SE 9 71 5 WGM 12					1	1:	23450	65032	34507					
Investigation Date:Vegetation notes:October 5th, 2009.Prairie grasses.							site slope osition of		Varíable across síte. 2%						
Test hole No. Soil S Test Pít #1		Soil Sub	group	Dup Parent Material			Drainag	e	Depth of La	b sample #1	Depth of Lab sample #2				

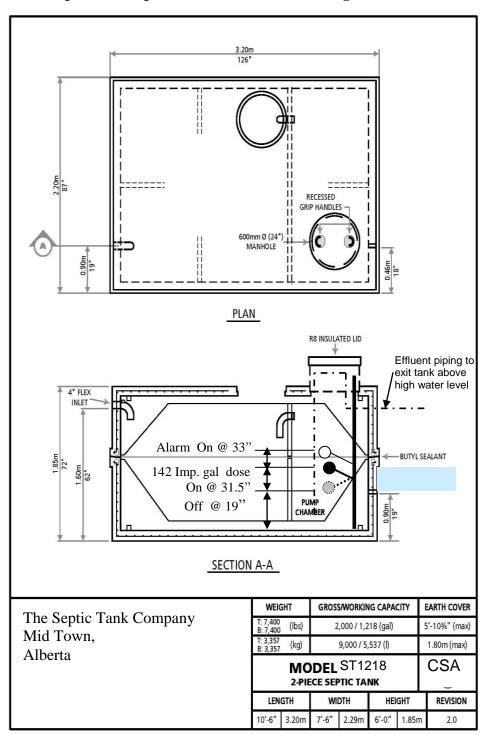
Hori -zon	Depth (cm) (in)	Text	ture	Lab or HT	Color	ır	Gleying	Mottling	Struct	ure	Grade	Consistence	Moisture	% Coarse Fragments
A	Surface to 8 in.	Loamų Mediu Sand (LMS	m	HT	Dark bro	wn.	None.	None.	Síngle Graín		0		Moíst	20%
р	8 to 45 ín.	Fíne Sandı Loam (FSL)	-	HT and Lab	Líght br	own.	None.	None.	Blocky		3	∓ ríable	Moíst.	10%
В	45 to 60 ín.	Sílt L (SIL)	oam	HT	Líght brownísi grey.	1	At 4.5 ft saturated and gleyed.	4 to 5 ft many prominent distinct mottles noted throughout.	Prísma	Prísmatíc		Fríable to firm.	Moist to Wet below 4.5 feet.	<1%
С	60 to 96 ín.	Sandı Clay (HT	Líght to dark gre	y.			Massív	le	0	Fírm	Moíst to wet.	<3%
Depth	to Groundwater		4.5 fe	et.		Rest	Restricting Soil Layer Characteristic			Sandy clay restricts downward effluent movement as massive and contains saturated conditions.				
Depth	to Seasonally Saturat	ed Soil	4 feet			Dep	th to restrictive So	oil Layer		4 fee	t.			
Site T	opography		Slígh	tly undul	ating.	Dep	th to Highly Perm	eable Layer Limiting l	Design	Not e	encountere	d in this soils a	ssessment and	desígn.
to sys	oil Characteristics a tem design effluent lo	oading	graine	ed. It is the	key soil hor	ízon fo	or effluent loadin	s sample from 8 to 45 g desígn consíderatio	ins.					oam ís fine
		-	0					condítíons that wo test pít locatíon ha	•					treatment
field	ís not acceptable be	cause of	less the	an 5 ft vei	tícal sepai	ration.	A treatment n	ound could be desig	gned for ·	thís lo	cation if	requíred.	-	

Appendix B - Alberta Private Sewage Treatment System Soil Profile Log Form

Smíth R	esídence	Soíl Ass	essment									
				Leg	al Land Location					Test	Pit GPS Coordinates	
LSD-1/4	LSD-1/4 Sec Twp Rg Mer Lot							Block		Easting	Northing	
SE	SE 9 71 5 WGM 12			1		1:	23450	65024	34535			
	Investigation Date:Vegetation notes:October 5th, 2009.Praíríe grasses.							site slope of sition of		Varíable across síte. Nomínally flat.		
Test hole No. Soil S Test Pít #2		Soil Sub	group	Pa	rent Material		Drainage	2	Depth of Lat 30 – 3	-	Depth of Lab sample #2	

Hori -zon	Depth (cm) (in)	Tex	ture	Lab or HT	Colo	ur	Gleying	Mottling	Struct	ure	Grade	Consistence	Moisture	% Coarse Fragments
A	Surface to 24 ín.	Loam Mediu Sand (LMS	im	HT	Dark bri	own.	None.	None.	Síngle Graín		0		Moíst	40%
ρΔ	24 to 60 in.	Fíne Sand Loam (FSL)	0	HT and Lab	Líght br	own.	None.	None.	Blocky		3	Fríable	Moíst to dry.	5%
ЪЪ	60 to 84 ín.	Sílt L (SIL)		нт	Líght brownís grey.	h	None.	None.	Prísma	tíc	2	Fríable to firm.	Moíst.	<1%
С	84 to 96 at end of test pít.	Sand Clay		HT	Líght to dark gr		At 7.5 ft saturated and gleyed.	7 to 7.5 ft Many dístínct promínent mottles.	Massiv	'e	0	F írm	Moíst to wet.	<5%
	to Groundwater	•	7.5 ft			Rest	tricting Soil Layer	Characteristic	·				j Clay restrict ates saturated	
Depth	to Seasonally Saturat	ed Soil	7 feet			Dep	th to restrictive So	bil Layer		≠ feet.				
Site To	opography		Slígh	itly undul	ating.	Dep	th to Highly Perm	eable Layer Limiting	Design	Not encountered in this soils assessment and design.				
	oil Characteristics a tem design effluent l							in the Sandy loan I design must use.	n soil fron	n 24 ti	0 60 ínc)	ies determínec	l the sand fra	rtíon ís fine
Weat	her Condition notes	: Slíght	ly over	cast with r	noderate v	∕ind –	no raín or other	r conditions that wo	ould ímpa	ct soil	s assessv	nent were enco	ountered.	
	nents (such as root a atíng no obvíous lí					ent obs	ervations): Pref	erred trench depth í.	s 18 to 24	f ínch.	Roots ex	tend to 6 feet	(very fine at 1	hat depth)

Appendix B - Alberta Private Sewage Treatment System Soil Profile Log Form


	Legal Land Location Test Pit GPS Coordinates													
LSD-1/4	SD-1/4 Sec Twp Rg Mer Lot						Block Plan		Plan	Easting	Northing			
SE	9	71	5	WGM	12		1 123450		23450	64964	34557			
	ber 5 th , 2009. Vegetation notes: Vegetation notes:					Overall sit			Varíable across síte. Nomínally flat.					
Test hole No. So		Soil Sub	group	Parent Material			5			b sample #1 45 ín.	Depth of Lab sample #2			

Hori -zon	Depth (cm) (in)	Tex	ture	Lab or HT	Colo	our	Gleying	Mottling	Struct	ure	Grade	Consistence	Moisture	% Coarse Fragments
A	Surface to 22 ín.	Loamı Mediu Sand (LMS	m	HT	Dark br	own.	None.	None.	Síngle Graín		0		Moist	45%
B1	22 to 63 ín.	Fine Sandy Loam (FSL)	0	HT and Lab	Líght b	rown.	None.	None.	Blocky	1	3	Fríable	Moíst to dry.	5%
B2	63 to 84 ín.	Sílt L (SIL)		нт	Líght brownís grey.	sh	None.	None.	Prísma	itíc	2	Slíghtly fríable.	Moíst to dry.	4%
С	84 to 96 ín.	Sandi Clay (<u> </u>	HT	Líght ti dark gi		At 7.5 ft ís saturated and gleyed.	At 7 to 7.5 ft many prominent distinct mottles	Massiv	'e	0	Fírm	Moíst to wet.	<2%
Depth	to Groundwater	<u>.</u>	7.5 ft	eet.		Rest	ricting Soil Layer	Characteristic				restrícts down nd contains sa		
Depth	to Seasonally Satura	ted Soil	≯ feet			Dep	th to restrictive So	oil Layer		₹ feet.				
Site T	opography		Slígh	itly undul	ating.	Dep	th to Highly Perm	neable Layer Limiting	Design	Not ei	ncounte	red in this soil	ls assessment	and desígn.
to sys	oil Characteristics a tem design effluent l	loading	graín	ed. This is	the key	soil hor	izon the systen	. ín the Sandy loan 1 desígn must use.	Test píts	2 and :	3 are coi	nsistent in the	eir characteris	
		-	0					r conditions that wo						
								sand particle size in ith the preferred tren					con as ídentífi	ed by lab

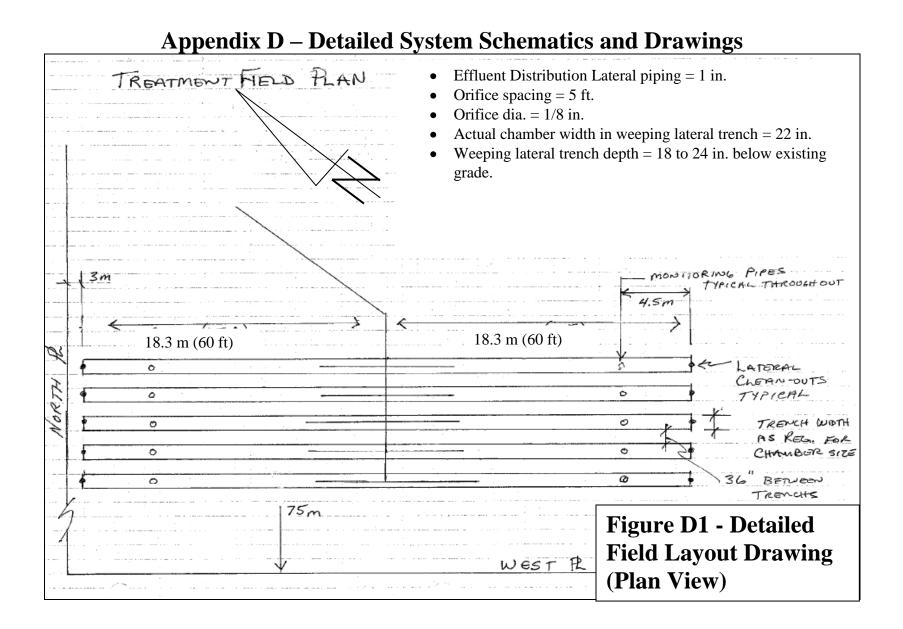
(APPENDIX B)

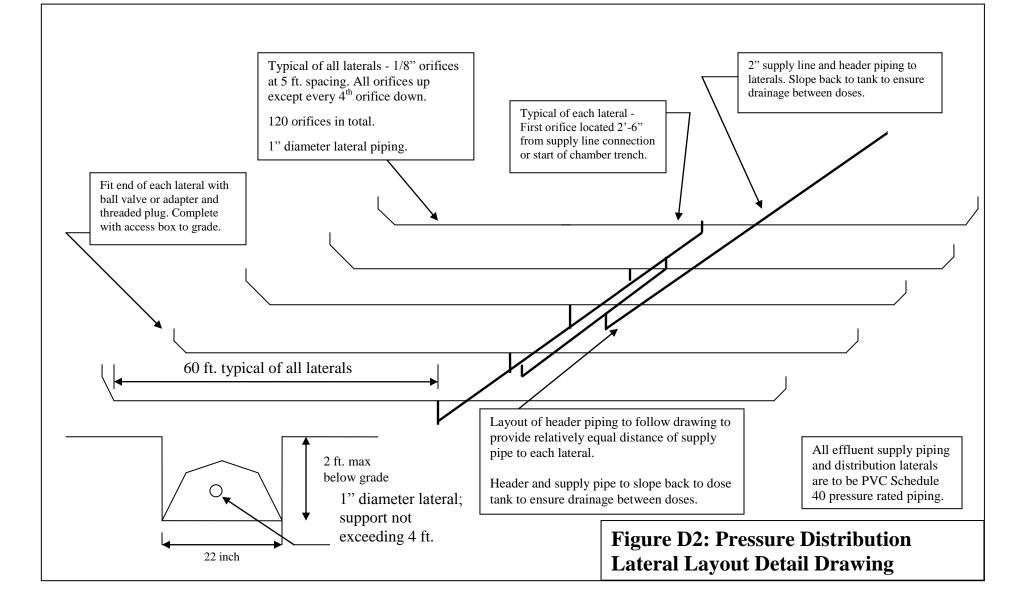
Insert lab analysis results of soil samples taken for determining soil texture!

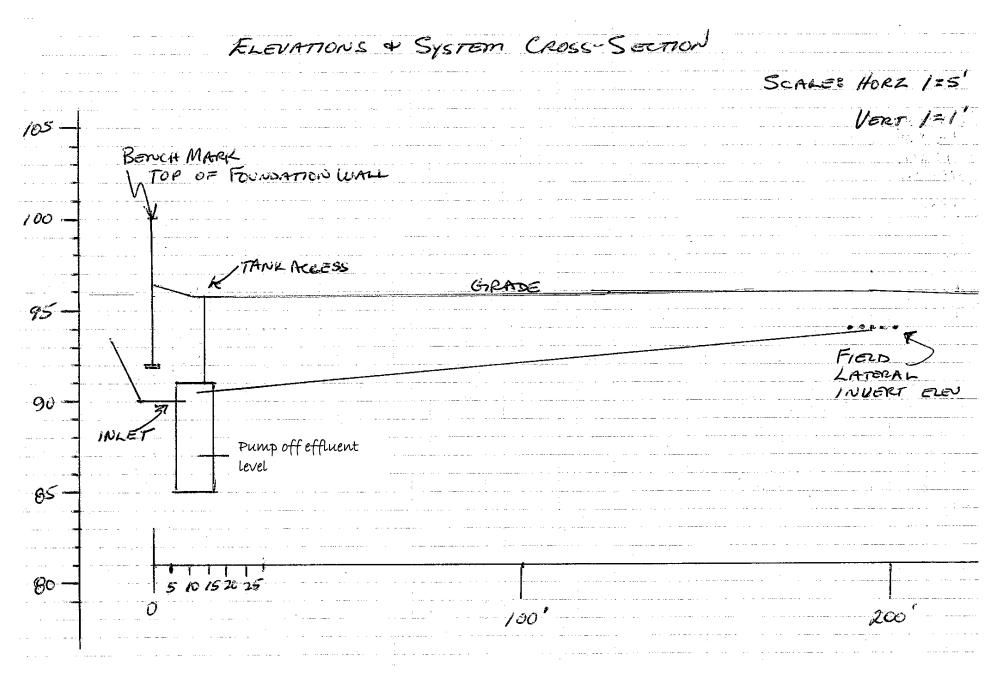
Appendix C - Manufacturer's and Design Specifications for System Components

Septic Tank Specifications and Float Setting Details.

Appendix C - Pump Specifications

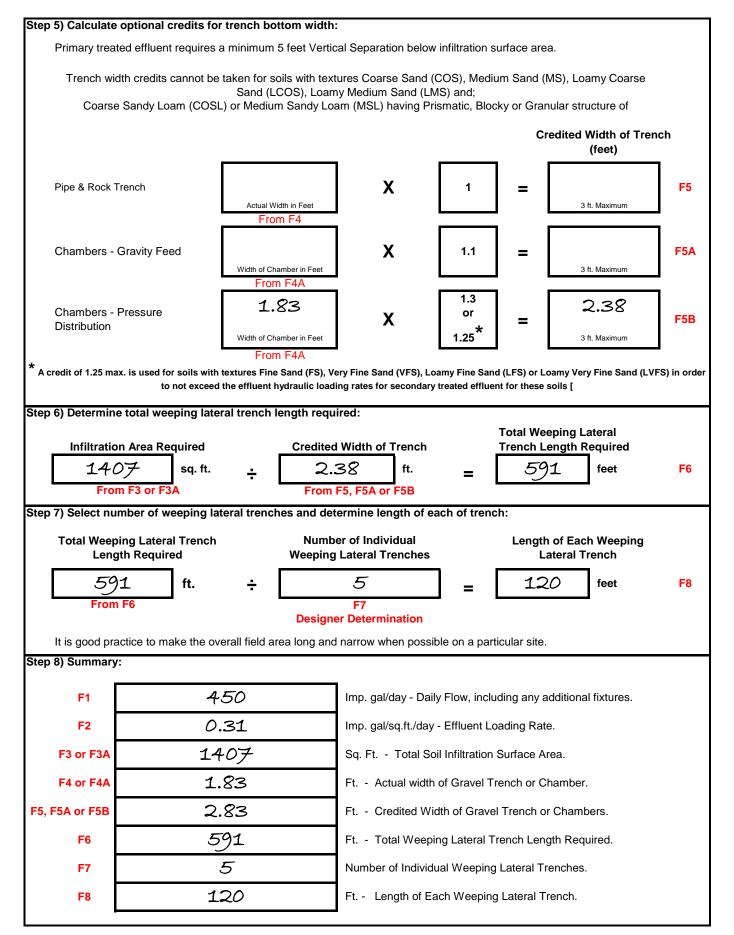

Myers Model ME50 (1/2 Hp) Selected


Capacities:		120 GPM	454 LPM	
Shut-Off Head:		95 ft.	28.9 m	
Max. Spherical Solids:		3/4 in.	19 mm	
Liquids Handling:		domestic effluent and drain water		
Intermittent Liquid Temp.:		up to 140°F	up to 60°C	
Motor Electrical Data:		1/2 HP, 115V, 1Ø, 1/2 to 1-1/2 HP, 230V, 1Ø, 208/230/460/575V, 3Ø, oil-filled, permanent split capacitor type, 1Ø, 3450 RPM, 60Hz		
Acceptable pH Range:		6–9		
Specific Gravity:		.9–1.1		
Viscosity:		28–35 SSU		
Discharge, NPT:		2 in.	50.8 mm	
Housing:		cast iron		
Min. Sump Diameter:	Simplex Duplex	24 in. 36 in.	61.0 cm 91.4 cm	
Power Cord:		10 ft.		


Smith residence system demand: 44.1 imp gal/min. (53 US gal/min) at 28.6 foot pressure head. CAPACITY LITERS PER MINUTE ME1501 **FOTAL HEAD IN METERS** TOTAL HEAD IN FEET ZH ME100 ; Hp 14 HP 2HI 100 110 CAPACITY GALLONS PER MINUTE

Product Performance Chart

May 31, 2010



Sample doc only, representation of trade names does not indicate preference to products - Page 17

Appendix E – System Design Worksheets

Primary Effluent Treatment Field Trench Bottom Surface Area & Length Sizing								
This design worksheet was developed by Alberta Municipal Affairs and Alberta Onsite Wastewater Management Association.								
The complete system is to comply with Alberta Private Sewage Standard of Practice 2009 This worksheet does NOT consider all of the requirements of the mandatory Standard Use only Imperial units of measurement throughout (feet, inches, Imperial gallons, etc)								
Step 1) Determine the expected volume of sew Note: Use Table 2.2.2.2.A. (p.30) & 2.2.2.2.B. (p Provide allowance for additional flow factors as of	.31) to determine expected	0 1	er day.					
Assess the initial sewage strength against the re Effluent quality must meet the requirement o		,	Expected Peak Volume of Sewage per Day 450	F1				
Step 2) Determine the design soil effluent load	ling rate:		bil Effluent Loading Rate m >30 - 150 mg/L column]					
FSL & BK Texture Structure		field can	0.32 Imp. gal/ sq.ft./day s less than 0.2 gal/sq.ft./day a tre tot be used. Article 8.2.1.13 tion according to Imperial Table	F2 eatment				
Note: Effluent loading rate MUST be determined from soil texture, structure, and grade classification according to Imperial Table A.1.E.1. (p.151). Note: Ensure infiltration loading rate chosen does not exceed loading rates as set out in 8.1.2.2. (p. 101								
Step 3) Calculate the required infiltration surfa Expected Peak Volume of Sewage per day	Soil Effluent	ORE area reducti	on factors: Soil Infiltration Area					
450 ÷	0.32	=	1407	F3				
Imp. gal/day From F1	Imp. gal/sq. ft/day From F2		sq.ft.					
 For a Pipe & Rock design utilizing pressure distribution, Article 8.2.1.8. allows a 20% reduction in the surface infiltration area. DO NOT USE THIS STEP IF THE DESIGN UTILIZES CHAMBERS. Reduction Factor Soil Infiltration Area Required 								
x	0.8	=		F3A				
sq.ft.			sq.ft.					
From F3 This reduction cannot be utilized for soils with soil textures Coarse Sand (COS), Medium Sand (MS), Loamy Coarse Sand (LCOS), Loamy Medium Sand (LMS) and; Coarse Sandy Loam (COSL) or Medium Sandy Loam (MSL) having Prismatic, Blocky or Granular structure								
Step 4) Type and width of trench bottom used	:							
Actual Pipe & Rock Trench Width in inches. inches	12		feet	F4				
	12	=	1661					
Actual Chamber Width in inches		. <u></u>						
inches <u>-</u>	12	=	feet	F4A				

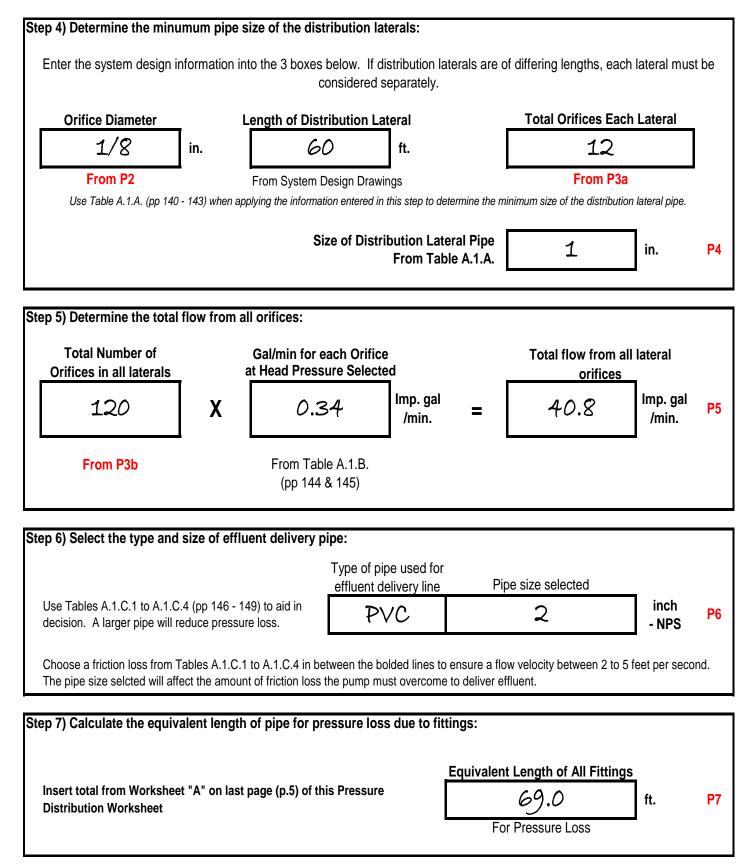
Sample doc only, representation of trade names does not indicate preference to products - Page 18

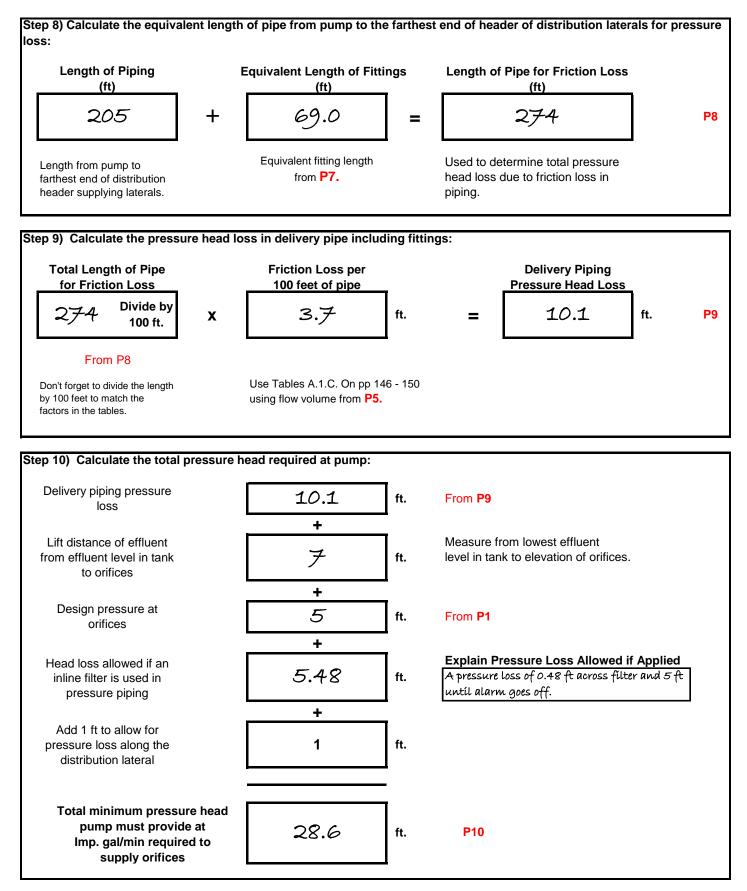
Pressure Distribution, Orifice, Pipe & Pump Sizing

This design worksheet was developed by Alberta Municipal Affairs and Alberta Onsite Wastewater Management Association.

The completed installation is to comply with Alberta Private Sewage Standard of Practice 2009.

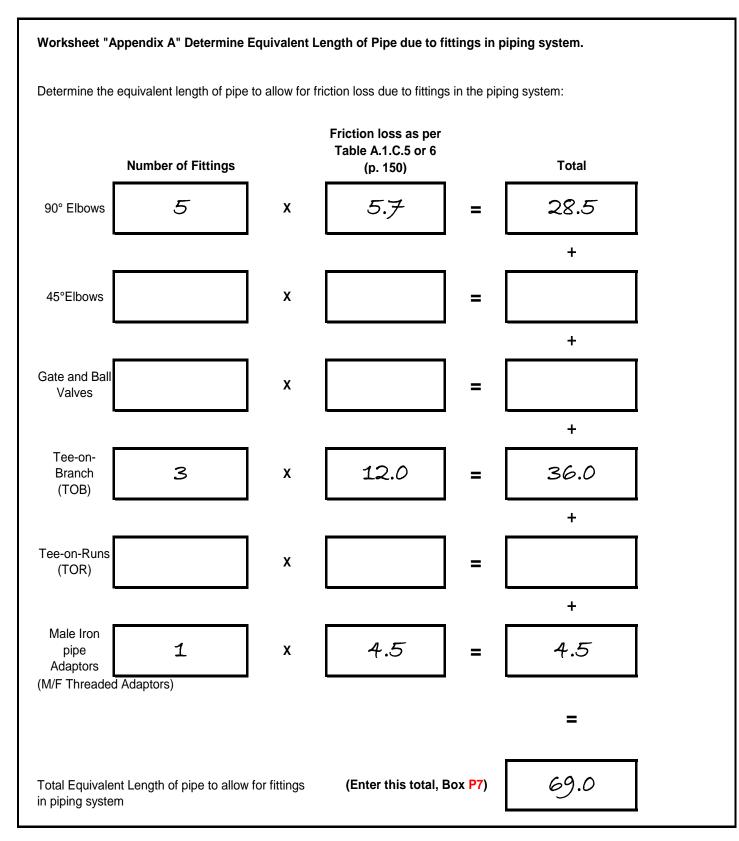
This worksheet is for use in Alberta to: size the orifices in distribution lateral pipes, size effluent delivery piping, and to calculate the required capacity and pressure head capability of the effluent pump.


It can be used for: calculating delivery of effluent to laterals in disposal fields, mounds and sand filters. This worksheet does NOT consider all of the mandatory requirements of the Standard.


It is intended for use by persons having training in the private sewage discipline.


Note: Page numbers refer to the Private Sewage Systems Standard of Practice 2009.

Use only Imperial units of measurement throughout (feet, inches, Imperial gallons, etc...).


Step 1) Select the pressure head to be Minimum pressure at the orifice: 3/16" or less orifice = 5 ft. Minimum - 2		s:							
larger than 3/16" orifice = 2 ft. Minimur				-					
Design p	Design pressure at lateral orifices		5		P 1				
Note: worksheet will not provide an adequate pressure head and volume of discharge at the c									
Step 2) Select the size of orifice in the	laterals:								
Minimum size: 2.6.1.5. (1)(e) p. 46	1/8"	Orifice Diameter selected	1/8	in.	P2				
Note: larger sizes are less likely to plug.									
Step. 3) Select the spacing of orifices and determine the numbeLength of Distribution LateralSpacing of Orifices selFrom system design drawingsdesign			stalled in distribution la Resulting number of per lateral						
60 ft. ÷	5	ft. =	12		P3a				
Select a spacing of orifices to attain even distribution over the treatment area: Maximum spacings are determined for : * 5 ft. Primary treated effluent: 2.6.1.5 (e) (pp. 46 - 47) * 3 ft. Secondary treated effluent: 8.1.1.8 & 2.6.2.2 (c) (pp 98 & 47 - 48) * 3 ft. On sandy textured soils: 8.1.1.8 (p. 98)									
12 X	10 =		120		P3b				
From P3a Numbe	r of Laterals	Total Num	per of Orifices All Lateral	S					
If laterals are of differing lengths, calculate each	n separately and add the number	of orifices together.							

Step 13) Consider the pumping demands of the system. If they are considered excessive, redesign the pressure distribution system and recalculate the pump demands.

